

Year 11 Specialist Mathematics Units 1,2 Test 5 2021

Section 1 Calculator Free Matrices

STUDENT'S NAME

DATE: Monday 30 August

TIME: 25 minutes

MARKS: 24

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Consider the matrices below.

$$A = \begin{bmatrix} 1 & -5 \\ -1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 1 & 6 \end{bmatrix} \quad C = \begin{bmatrix} 7 & -9 \\ 0 & 5 \\ 4 & -1 \end{bmatrix} \quad D = \begin{bmatrix} 6 & -4 & 0 \\ 2 & 11 & -3 \end{bmatrix}$$

(a) Determine $3D - 2B$.

(b) Matrices *ABC* can be multiplied, in that order to form another matrix. Give two other possible orders of multiplying matrices *A*, *B* and *C* that will form another matrix. [2]

(c) Matrix W is such that AW - B = D. Determine matrix W.

[2]

[3]

Consider the matrices below.

$$A = \begin{bmatrix} k & 5\\ k-1 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & -5\\ 1-k & k \end{bmatrix}$$

(a) Determine the value/s of k if A^{-1} is singular.

(b) Determine the value/s of k if matrices A and B are the inverse of each other. [3]

[2]

Let A be a non-singular square matrix such that $4A^2 + 6A = I$ where I is the identity matrix.

(a) Prove that $2A^3 - 5A + 0.75I = 0$ where *O* is the zero matrix. [4]

(b) Hence determine the value of c such that $cA^{-1} = 10I - 4A^2$. [3]

Given
$$B^3 = \begin{bmatrix} 2 & 4 \\ 1 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = Q^{-1}$ determine $(ABQ)^3$.

Year 11 Specialist Mathematics Units 1,2 Test 5 2021

Section 2 Calculator Assumed Matrices

STUDENT'S NAME

DATE: Wednesday 31st March

TIME: 25 minutes

MARKS: 29

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (3 marks)

Determine the matrix that transforms A(-1,5) to A'(7,14) and B(4,2) to B'(-6,32).

A pair of linear equations in x and y is determined by

$$\begin{bmatrix} 3 & -4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -34 \\ -44 \end{bmatrix}$$

(a) Use an inverse matrix to determine
$$x$$
 and y .

(b) Hence solve the equation
$$\begin{bmatrix} 3 & -4 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x+5 \\ x^2+1 \end{bmatrix} = \begin{bmatrix} -34 \\ -44 \end{bmatrix}$$
[3]

[3]

Let S be a shear transformation matrix of factor $\frac{1}{2}$ parallel to the x-axis.

(a) State matrix S. [1]

(b) What does S^{-1} represent?

[2]

(c) Show mathematically that if ANY shear matrix is applied to ANY geometric figure, the area of the image will always be equal to the area of the original figure. [2]

All the points on the line y = 2x - 5 are transformed by the matrix $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$. Determine the equation of the image of the line.

9. (10 marks)

The parallelogram *PQRS* with coordinates *P*(2,1), *Q*(5,2), *R*(6,7) and *S*(3,6) is transformed to parallelogram P'Q'R'S' with coordinates P'(1,-2), Q'(2,-5), R'(7,-6) and S'(6,-3).

(a) Describe the geometrical effect of the transformation and give the appropriate transformational matrix.

Parallelogram P'Q'R'S' is then transformed by the matrix $\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$ to P''Q''R''S''.

(b) Determine the coordinates of P'', Q'', R'' and S''.

- (c) If the area of PQRS is 12 units², calculate the area of P''Q''R''S''. [2]
- (d) Determine a single matrix which will map parallelogram P''Q''R''S'' to parallelogram *PQRS*. [3]

[3]

[2]